
www.manaraa.com- 1 -

Tropos: A Framework for Requirements-Driven
Software Development

John Mylopoulos1, Jaelson Castro2 and Manuel Kolp1

1University of Toronto , Department of Computer Science, University of Toronto,
Toronto, Canada

{jm,mkolp}@cs.toronto.edu
2Universidade Federal de Pernambuco, Centro de Informática, Recife, Brazil*

jbc@di.ufpe.br

Abstract. Traditionally, software development techniques have been
implementation-driven in the sense that the programming paradigm of the day
dictated the design and requirements analysis techniques used. For example,
structured programming led to structured analysis and design techniques in the
‘70s. More recently, object-oriented programming gave rise to object-oriented
analysis and design. In this chapter we explore a software development
methodology which is requirements-driven in the sense that the concepts used
to define requirements for a software system are also used later on during
design and implementation. Our proposal adopts Eric Yu's i* framework [1], a
modeling framework for early requirements, based on the notions of actor
and goal. We use these notions as a foundation to model late requirements, as
well as architectural and detailed design. The proposed framework, named
Tropos, seems to complement nicely current proposals for agent-oriented
programming platforms.

1 Introduction

Software development techniques have traditionally been inspired and driven by the
programming paradigm of the day. This means that the concepts, methods and tools
used during all phases of development were based on those offered by the pre-
eminent programming paradigm. So, during the era of structured programming,
structured analysis and design techniques were proposed [2, 3], while object-oriented
programming has given rise more recently to object-oriented design and analysis [4,
5]. For structured development techniques this meant that throughout software
development, the developer can conceptualize her software system in terms of
functions and processes, inputs and outputs. For object-oriented development, on the
other hand, the developer thinks throughout in terms of objects, classes, methods,
inheritance and the like.

* This work was carried out during a visit to the Department of Computer Science, University

of Toronto. Partially supported by the CNPq – Brazil under grant 203262/86-7.

www.manaraa.com- 2 -

Using the same concepts to align requirements analysis with software design and
implementation makes perfect sense. For one thing, such an alignment reduces
impedance mismatches between different development phases. Think what it would
be like to take the output of a structured analysis task, consisting of data flow and
entity-relationship diagrams, and try to produce out of it an object-oriented design!
Moreover, such alignment can lead to coherent toolsets and techniques for developing
software (and it has!). As well, it can streamline the development process itself.

But, why base such an alignment on implementation concepts? Requirements
analysis is arguably the most important stage of software development. This is the
phase where technical considerations have to be balanced against social and personal
ones. Not surprisingly, this is also the phase where the most and costliest errors are
introduced to a software system. Even if (or rather, when) the importance of design
and implementation phases wanes sometime in the future -- thanks to COTS, software
reuse and the like -- requirements analysis will remain a critical phase for the
development of any software system, answering the most fundamental of all design
questions: “what is the system intended for?”

This paper speculates on the nature of a software development framework, named
Tropos1, which is requirements-driven in the sense that it is based on concepts used
during early requirements analysis. To this end, we adopt the concepts offered by i*
[1], a modeling framework offering concepts such as actor, agent, position
and role, as well as social dependencies among actors, including goal,
softgoal, task and resource dependencies. These concepts are used in a small
example to model not just early requirements for an insurance claim management
system, but also late requirements, architectural design and detailed design.

The proposed methodology spans four phases of software development:

• Early requirements, concerned with the understanding of a problem by studying an
existing organizational setting; the output of this phase is an organizational model
which includes relevant actors and their respective goals;

• Late requirements, where the system-to-be is described within its operational
environment, along with relevant functions and qualities;

• Architectural design, where the system’s global architecture is defined in terms of
subsystems, interconnected through data and control flows;

• Detailed design, where each architectural component is defined in further detail in
terms of inputs, outputs, control, and other relevant information.
Section 2 introduces the primitive concepts offered by i* and illustrates their use

with an example. Sections 3, 4, and 5 sketch how the technique might work for late
requirements, architectural design and detailed design respectively. Throughout, we
assume that the task at hand is to build generic software to support back office claims
processing within an insurance company. Finally, section 6 summarizes the
contributions of the paper, offers an initial self assessment of the proposed
development technique, and outlines directions for further research.

1 The name “Tropos” is derived from the Greek “tropé”, which means “easily changeable”,

also “easily adaptable.”

www.manaraa.com- 3 -

2 Early Requirements Analysis with i*

During early requirements analysis, the requirements engineer is supposed to capture
and analyze the intentions of stakeholders. These are modelled as goals which,
through some form of a goal-oriented analysis, eventually lead to the functional and
non-functional requirements of the system-to-be [6]. In i* (which stands for
``distributed intentionality’’), early requirements are assumed to involve social actors
who depend on each other for goals to be achieved, tasks to be performed, and
resources to be furnished. The i* framework includes the strategic dependency model
for describing the network of relationships among actors, as well as the strategic
rationale model for describing and supporting the reasoning that each actor has about
its relationships with other actors. These models have been formalized using
intentional concepts such as goal, belief, ability, and commitment (e.g., [7]). The
framework has been presented in detail in [1] and has been related to different
application areas, including requirements engineering [8], business process
reengineering [9], and software processes [10].

A strategic dependency model is a graph, where each node represents an actor, and
each link between two actors indicates that one actor depends on the other for
something in order that the former may attain some goal. We call the depending actor
the depender and the actor who is depended upon the dependee. The object around
which the dependency centers is called the dependum. By depending on another
actor for a dependum, an actor is able to achieve goals that it is otherwise unable to
achieve, or not as easily, or not as well. At the same time, the depender becomes
vulnerable. If the dependee fails to deliver the dependum, the depender would be
adversely affected in its ability to achieve its goals.

Figure 1 shows the beginning of an i* model consisting of two relevant actors for
an automobile insurance example. The two actors are named respectively Customer
and Insurance Company. The customer has one relevant goal CarRepaired,
while the insurance company has goals Settle claim, Maximize profits,
and keep Happy customer. Since the last two goals are not well-defined, they are
represented in terms of softgoals (shown as cloudy shapes.)

Once the relevant stakeholders and their goals have been identified, a means-ends
analysis determines how these goals (including softgoals) can actually be fulfilled
through the contributions of other actors. Let’s focus on one such goal, namely
Handle claim.

www.manaraa.com- 4 -

Fig. 1. “Customers want their cars repaired, while the insurance company wants to maximize
profits, settle claims and keep customers happy”

As shown in figure 2, the analysis is carried out from the perspective of the
insurance company, who had the goal in the first place. It begins with the goal
Handle claim and postulates a task Handle claim (represented in terms of a
hexagonal icon) through which the goal might be fulfilled. Tasks are partially ordered
sequences of steps intended to fulfill some goal. The task we have selected is
decomposed into sub-tasks Verify policy, Prepare offer, Finalize
deal which together can complete the handling of a claim. It should be noted that
the same goal (Handle claim) might have several alternative tasks that can fulfill
it. Likewise, there may be several alternative decompositions of a task into sub-tasks.
Figure 2 only shows one set of decompositions which collectively can fulfill the root
goal.

Tasks can also be decomposed into goals, whose fulfillment accomplishes the task.
For example, the task Prepare offer is decomposed into goals Whose fault?
and Determine amount. Representing a task component as a goal means that
there might be several possible ways of accomplishing that component.

Decompositions continue until the analysis can identify an actor who can fulfill a
goal, carry out a task, or deliver on some needed resource. Such dependencies for the
Handle claim goal include:

• Resource dependencies on actors Police and Witness, who are expected to
deliver accident information;

• Another resource dependency on Doctor for injury information;

• Task dependency on Appraiser, who is expected to carry out the standard
appraisal task;

• Softgoal dependencies on Doctor, who must make sure that the patient receives
adequate treatment, and the Appraiser, who is expected to minimize the amount
of the appraisal.

www.manaraa.com- 5 -

Fig. 2. Means-ends analysis for the goal Handle claim.

The result of such means-ends analyses for the initial goals leads to the strategic
dependency model mentioned earlier. Fragments of such a model for the insurance
claim example are shown in figure 3.

According to this model, the customer depends on the appraiser for a fair appraisal.
However, the appraiser can be expected to act in the interests of the insurance
company because of his dependence on the latter for continued employment. The
customer, in turn, depends on the body shop to give a maximal estimate, while the
body shop depends on the customer for continuing business.

Although a strategic dependency model provides hints about why processes are
structured in a certain way, it does not sufficiently support the process of suggesting,
exploring, and evaluating alternative solutions. That is the role of the Strategic
Rationale model. A strategic rationale model is a graph with four main types of nodes
-- goal, task, resource, and softgoal -- and two main types of links -- means-ends links
and process decomposition links. A strategic rationale graph describes the criteria in
terms of which each actor’s selects among alternative dependency configurations.

www.manaraa.com- 6 -

Fig. 3. Partial strategic dependency model for the handling of insurance claims.

3 Late Requirements Analysis

Late requirements analysis results in a requirements specification document which
describes all functional and non-functional requirements for the system-to-be. In
Tropos, the system is represented as one or more actors which participate in a
strategic dependency model, along with other actors in the system’s operational
environment. In other words, the system comes into the picture as one or more actors
which contribute to the fulfillment of stakeholder goals. For example, the system may
be introduced in the strategic dependency model in order to support the goal
Process claim, as well as the softgoal Fast processing of insurance
claims, which contributes positively to both the Maximize profits and Happy
customer softgoals (figure 4). Of course, as late requirements analysis proceeds,
the system is given additional responsibilities, and ends up as the depender of several
dependencies. Moreover, the system is decomposed into several sub-actors which
take on some of these responsibilities. To obtain this decomposition, Process
claim is first reduced into subgoals, such as Select process (i.e., what
sequence of steps will be used to process the claim), Process claim and Report
status, using the kind of means-ends analysis illustrated in figure 2, along with a
strategic rationale analysis. The result of this analysis is a set of (system and human)
actors who are dependees for some of the dependencies that have been generated.

www.manaraa.com- 7 -

Fig. 4. The insurance company depends on the system for fast processing of insurance claims

Figure 5 suggests one possible assignment of responsibilities. In particular,
Process Selector decides what kind of processing will be done for a given
claim, and relies on a clerk to carry out this process. We assume that different
insurance companies using the software may be processing various types of claims
(e.g., large vs small) differently. Tracker keeps track of the status of claim and
needs information from the processing clerk in order to do so. Reporter reports to
the claims manager, or the customer on the status of a claim following a given script
(hence the task dependency), while Trouble shooter is looking for signs of
problems ahead. Tracker and the Trouble shooter are introduced in order to
contribute to the fulfillment of the Fast processing softgoal.

Resource, task and softgoal dependencies correspond naturally to functional and
non-functional requirements. Leaving (some) goal dependencies between system
actors and other actors is a novelty. Traditionally, functional goals are
“operationalized” during late requirements [6], while quality softgoals are either
operationalized or “metricized” [11]. For example, Fast processing may be
operationalized during late requirements analysis into particular business processes
for processing claims. Likewise, a security softgoal might be operationalized by
defining interfaces which minimize input/output between the system and its
environment, or by limiting access to sensitive information. Alternatively, the security
requirement may be metricized into something like “No more than X unauthorized
operations in the system-to-be per year”.

Leaving goal dependencies with system actors as dependees makes sense whenever
there is a foreseeable need for flexibility in the performance of a task on the part of
the system. For example, consider a communication goal “communicate X to Y”.
According to conventional software development techniques, such a goal needs to be
operationalized before the end of late requirements analysis, perhaps into some sort of
a user interface through which user Y will receive message X from the system. The

www.manaraa.com- 8 -

problem with this approach is that the steps through which this goal is to be fulfilled
(along with a host of background assumptions) are frozen into the requirements of the
system-to-be. This early translation of goals into concrete plans for their fulfillment
makes software systems fragile and less reusable.

For our example, we have left two goals in the late requirements model. The first
goal is Trouble shooting, because we propose to implement Trouble
shooter as an intelligent agent who “learns on the job” (…so to speak…) by using
machine learning techniques. Also, Select process, because we want to include
in the system’s architecture a number of components which reflect different types of
claims processing done in the insurance industry. So, instead of operationalizing this
goal during requirements analysis, we propose to do so during architectural design.

Fig. 5. The system consists of four actors, each with external dependencies.

4 Architectural Design

Architectural design has emerged as a crucial phase of the design process. Initially a
software architecture can be considered to be the realization of early design decisions
made regarding the decomposition of the system into components. A software
architecture constitutes a relatively small, intellectually graspable model of system
structure, and how system components work together. Software architects have

www.manaraa.com- 9 -

developed comprehensive catalogues of software architectural styles (see, for
example, [12]). Such styles range from Independent components (such as Events-
driven architectures and communicating processes), Call-and-return (e.g., object-
oriented systems, layered, main program and subroutine architectures), Data flow (for
example, batch sequential, pipes-and-filters), Data centered (e.g., repository and
blackboard architectures), as well as Virtual machine architectures (rule-based
systems, and interpreters.) Most of these apply to software systems, even when the
basic software components are intentional actors rather than subsystems and
modules. For instance, a pipe and filter architectural style corresponds to an agent
assembly line, while the blackboard style has been used extensively in the agent
programming literature.

Architectures are influenced by system designers as well as technical and
organizational factors. During architectural design we concentrate on the key system
actors, defined during late requirements analysis, and their responsibilities. There
would be a set of desired functionality as well as a number of quality requirements
related to performance, availability, usability, modifiability, portability, reusability,
testability, etc. The functional requirements can be handled by many standard
technologies, such as structured analysis and design, or object-oriented design
methods. However, quality requirements are generally not addressed by such
techniques [13].

 Suppose that in addition to the requirements of figure 5, we have an “easily
modifiable” requirement for the Process selector actor imposed by the
Claims manager actor, to make sure that it can accommodate ever changing
variations on how an insurance claim is processed. Likewise, in order to fulfill the
requirement of good response time, imposed by the claims processing clerk on
process selector, a “good performance” softgoal is introduced. To cope with these
goals, the software architect, who is another (external) actor, goes through a means
ends analysis comparable to what was discussed earlier. In this case, the analysis
involves refining the softgoals to sub-goals that are more specific (and more precise!)
and then evaluating alternative architectural styles against them, as shown in figure 6
[14].

In the figure, the two softgoals take Process selector as argument,
meaning that the quality requirements they represent apply specifically to this system
component (rather than the whole system). The first of the two softgoals has been
AND-decomposed into subgoals Modifiable[Process], Modifiable[Data
representation], Modifiable[Function]. This analysis is intended to
make explicit the space of alternatives for fulfilling the top-level quality softgoals.
Moreover, the analysis allows the evaluation of several alternative architectural styles.
The styles are represented as goals (saying, roughly, “make the architecture of the
new system repository-based/object-oriented/…”) and are evaluated with respect to
the alternative quality softgoals as shown in figure 6. The evaluation results in
contribution relationships from the architectural goals to the quality softgoals, labelled
“+’, “-“, “++”, etc.

As with late requirements, the interesting feature of the proposed analysis method
is that it is goal oriented. Goals are introduced and analyzed during architectural
design, and guide the design process.

www.manaraa.com- 10 -

Apart from goal analysis, this phase involves the introduction of other system
actors which will take on some of the responsibilities of the key system actors
introduced earlier. For example, to accommodate the responsibilities of the
Reporter actor of figure 5, we may want to introduce a Data selector actor,
who selects the data to be presented, a Transformer actor, who performs
computations that transform the input data to useful information for the Customer
and the Claims manager, and a Presenter actor who presents these data in a
suitable format. Of course, this analysis is nothing but good old functional
decomposition and will not be discussed in any detail here.

Fig. 6. A strategic rationale model, from the perspective of the process selector actor.

An interesting decision that comes up during architectural design is whether
fulfillment of an actor’s obligations will be accomplished through assistance from
other actors, through delegation (“outsourcing”), or through decomposition of the
actor into component actors. Going back to the Reporter example, the introduction
of other actors described in the previous paragraph amounts to a form of delegation.
Reporter retains its obligations, but delegates subtasks, subgoals etc. to other
actors. An alternative architectural design would have Reporter outsourcing some
of its responsibilities to some other actors, so that Reporter removes itself from
the critical path of obligation fulfillment. Lastly, Reporter may be refined into an
aggregate of actors which, by design, work together to fulfill Reporter’s
obligations. This is analogous to a committee being refined into a collection of
members who collectively fulfill the committee’s mandate. It is not clear, at this
point, how the three alternatives compare, nor what are their respective strengths and
weaknesses.

www.manaraa.com- 11 -

5 Detailed Design

The detailed design phase is intended to introduce additional detail for each
architectural component of a software system. In our case, this includes actor
communication and actor behaviour. To support this phase, we may be adopting agent
communication languages, message transportation mechanisms, ontology
communication, agent interaction protocols, etc. from the agent programming
community. One possibility, among admittedly many, is adopt one of the extensions
to UML [5] proposed by the FIPA (Foundation for Intelligent Agents) and the OMG
Agent Work group.

For our example, let’s concentrate on the Fast processing goal dependency,
which might involve a detailed design on agent interaction protocols (AIP). Such a
protocol describes a communication pattern among actors as an allowed sequence of
messages, as well as constraints on the contents of those messages. To define such a
protocol, we use AUML - the Agent Unified Modeling Language [15], which
supports templates and packages to represent the protocol as an object, but also in
terms of sequence and collaborations diagrams. In AUML inter- and intra-agent
dynamics are also described in terms of activity diagrams and state charts.

Figure 7 depicts a protocol expressed as a UML sequence diagram for Select
process. When invoked, a Claim manager actor sends a Call-for-
Proposal-Process-claim to a Process Selector actor who is willing to
participate in processing the claim.

The Process Selector actor can then choose to respond to the Claim
manager by a given deadline by submitting a proposal for a suitable Processing
clerk actor to deal with the processing (for example an expert on small claims).
Alternatively, Process selector may decide to refuse to process the claim or
indicate that it does not understand. If a proposal is offered, the Claim manager
actor has a choice of either rejecting or accepting the proposal. When Process
selector receives a proposal acceptance, it will contact the appropriate Claims
process clerk actor and place a request regarding (small) process claims. Based
on the returned information, Process selector can inform Claims manager
about the proposal’s execution. Additionally, the Claim manager actor can cancel
the execution of the proposal at any time.

Of course the sequence diagram in Figure 7 only provides a basic specification for
an agent claim processing protocol. More processing details are required. For
example, a Claims manager actor requests a call for (process claim) proposals
(CFP) from a Process selector actor. However, the diagram stipulates neither
the procedure used by the Claims manager to produce the CFP request, nor the
procedure employed by Process Selector to respond the CFP. Yet, these are
clearly important details at this stage of the software development process.

Such details can be provided by using leveling, i.e., by introducing additional
interaction and other diagrams which describe some of the primitive action of the one
shown on figure 7. Each additional level can express intra-actor or inter-actor
activity. At the lowest level, specification of an actor protocol requires spelling out
the detailed processing that takes place within an actor in order to implement the

www.manaraa.com- 12 -

protocol. Statecharts and activity diagrams can also specify the internal processing of
actors who are not aggregates.

Fig. 7. An actor interaction protocol for processing claims

6 Conclusions and Discussion

We have argued in favour of a software development methodology which is founded
on intentional concepts, such as those of actor, goal, (goal, task, resource,
softgoal) dependency, etc. Our argument rests on the claim that the elimination
of goals during late requirements, freezes into the design of a software system a
variety of assumptions which may or may not be true in its operational environment.
Given the ever-growing demand for generic, component-ized software that can be
downloaded and used in a variety of computing platforms around the world, we
believe that the use of intentional concepts during late software development phases
will become prevalent and should be further researched.

The Tropos project is only beginning and much remains to be done. We will be
working towards a modelling framework which views software from four
complementary perspectives:

• Social -- who are the relevant actors, what do they want? What are their
obligations? What are their capabilities?…

www.manaraa.com- 13 -

• Intentional -- what are the relevant goals and how do they interrelate? How are
they being met, and by whom?…

• Process-oriented -- what are the relevant business/computer processes? Who is
responsible for what?…

• Object-oriented – what are the relevant objects and classes, along with their inter-
relationships?
In this paper, we have focused the discussion on the social and intentional

perspectives because they are novel. As hinted earlier, we propose to use UML-type
modelling techniques for the others.

Of course, diagrams are not complete, nor formal as software specifications. To
address this deficiency, we propose to offer three levels of software specification. The
first is strictly diagrammatic, as discussed in this paper. The second involves formal
annotations which complement diagrams. For example, annotations may specify that
some obligation takes precedence over another. These could be used as a basis for
simple forms of analysis. Finally, we propose to include within Tropos a formal
specification language for all built-in constructs, to support deeper forms of analysis.
Turning to the organization of Tropos models, the concepts of i* will be embedded in
a modeling framework which supports generalization, aggregation, classification,
materialization and contextualization. Some elements of UML will be adopted as
well for modeling the object and process perspectives.

Like other requirements modelling frameworks proposed in the literature, we
recognize that diagrams are important for human communication, but are imprecise
and offer little support for analysis. Partially formal annotations can help in defining
some forms of analysis, and they serve as bridges between informal diagrams and
formal specifications. Finally, formal specifications serve as foundation for a formal
semantics, as well as a range of analysis techniques, including proofs of correctness,
process simulation, goal analysis etc.

Tropos constitutes the last leg of a trilogy on modelling languages. The first
language in the trilogy, Taxis [16], was intended as a design language for information
systems. Its main novelty was the adoption of semantic network representation
techniques to offer a modelling framework which was object-oriented and
emphasized taxonomic organization for data, transaction and exception classes. Telos
[17] focused on the use of classification to offer meta-modelling facilities where
concepts such as goal, activity, etc. could first be defined at the metaclass level
before being used at the class level. Telos was intended for software modelling, where
one could represent requirements, design, implementation and other information
about a software system within a single modelling framework. Tropos is probably the
most ambitious undertaking in the trilogy in that it aspires to influence not just the
modelling of different types of information about a software system, but also the
software development process itself.

Acknowledgements

Many colleagues contributed to the ideas that led to this paper. Special thanks to Eric
Yu, whose insights helped us focus our research on intentional and social concepts.

www.manaraa.com- 14 -

The Tropos project includes as co-investigators Eric Yu (University of Toronto)
and Yves Lesperance (York University); also Alex Borgida (Rutgers University),
Matthias Jarke and Gerhard Lakemeyer (Technical University of Aachen.) The
Canadian component of the project is supported in part by the Natural Sciences and
Engineering Research Council (NSERC) of Canada, and the CITO Centre of
Excellence, funded by the Province of Ontario.

References

[1] Yu, E., Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis,
Department of Computer Science, University of Toronto, 1995.

[2] DeMarco, T., Structured Analysis and System Specification, Yourdon Press, 1978.
[3] Yourdon, E. and Constantine, L., Structured Design: Fundamentals of a Discipline of

Computer Program and Systems Design, Prentice-Hall, 1979.
[4] Wirfs-Brock, R., wilkerson, B., Wiener, l., Designing Object-Oriented Software.

Englewood Cliffs, NJ; Prentice-Hall.
[5] Booch, G., Rumbaugh, J., Jacobson, I., The Unified Modeling Language User Guide, The

Addison-Wesley Object Technology Series, Addison-Wesley, 1999.
[6] Dardenne, A., van Lamsweerde, A., and Fickas, S., “Goal–directed Requirements

Acquisition,” Science of Computer Programming, 20, 3-50, 1993.
[7] Cohen, P. and Levesque, H. Intention is Choice with Commitment. Artificial Intelligence,

32(3).
[8] Yu, E., "Modeling Organizations for Information Systems Requirements Engineering,"

Proceedings First IEEE International Symposium on Requirements Engineering, San Jose,
January 1993, pp. 34-41.

[9] Yu, E., and Mylopoulos, J., "Using Goals, Rules, and Methods to Support Reasoning in
Business Process Reengineering", International Journal of Intelligent Systems in
Accounting, Finance and Management 5(1), January 1996.

[10] Yu, E. and Mylopoulos, J., "Understanding 'Why' in Software Process Modeling, Analysis
and Design," Proceedings Sixteenth International Conference on Software Engineering,
Sorrento, Italy, May 1994.

[11] Davis, A., Software Requirements: Objects, Functions and States, Prentice Hall, 1993.
[12] Bass, L., Clements. P., Kazman, R., Software Architecture in Pratice, SEI Series in

Software Engineering, Addison-Wesley, 1998.
[13] Chung, L. K., Nixon, B. A., Yu, E., Mylopoulos, J., Non-Functional Requirements in

Software Engineering, Kluwer Publishing, 2000.
[14] L. Chung, D. Gross, E. Yu , Architectural Design to Meet Stakeholder Requirements, in

Software Architecture, Patrick Donohue, ed., Kluwer Academic Publishers. 1999. pp. 545-
564. (TC2 First Working IFIP Conference on Software Architecture (WICSA1), 22-24
February 1999, San Antonio, Texas, USA.)

[15] Parunak, H. Van Dyke, Suater, J., Odell, J., Engineering Artifacts for Multi-Agents
Systems, ERIM CEC, 1999.

[16] Mylopoulos, J., Bernstein, P., and Wong. H. K. T., “A Language Facility for Designing
Data-intensive Applications,” ACM Transactions on Database Systems 5(2), 1980.

[17] Mylopoulos, J., Borgida, A., Jarke, M., and M. Koubarakis, M., “Telos: Representing
Knowledge About Information Systems,” ACM Transactions on Information Systems,
1990.

[18] Bubenko, J., “Information Modeling in the Context of System Development,” Proceedings
IFIP Congress ’80, 395-411, 1980.

www.manaraa.com- 15 -

[19]Greenspan, S., Mylopoulos, J., and Borgida, A., “Capturing More World Knowledge in the
Requirements Specification,” Proceedings Sixth International Conference on Software
Engineering, Tokyo, 1982.

